Generalized linear fractional programming under interval uncertainty

نویسنده

  • Milan Hladík
چکیده

Data in many real-life engineering and economical problems suffer from inexactness. Herein we assume that we are given some intervals in which the data can simultaneously and independently perturb. We consider a generalized linear fractional programming problem with interval data and present an efficient method for computing the range of optimal values. The method reduces the problem to solving from two to four real-valued generalized linear fractional programs, which can be computed in polynomial time using an appropriate interior point method solver. We consider also the inverse problem: How much can data of a real generalized linear fractional program vary such that the optimal values do not exceed some prescribed bounds. We propose a method for calculating (often the largest possible) ranges of admissible variations; it needs to solve only two real-valued generalized linear fractional programs. We illustrate the approach on a simple von Neumann economic growth model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Suggested Approach for Stochastic Interval-Valued Linear Fractional Programming problem

In this paper, we considered a Stochastic Interval-Valued Linear Fractional Programming problem(SIVLFP). In this problem, the coefficients and scalars in the objective function are fractional-interval, and technological coefficients and the quantities on the right side of the constraints were random variables with the specific distribution. Here we changed a Stochastic Interval-Valued Fractiona...

متن کامل

On ‎T‎he Fractional Minimal Cost Flow Problem of a Belief Degree Based Uncertain Network‎

A fractional minimal cost flow problem under linear type belief degree based uncertainty is studied for the first time. This type of uncertainty is useful when no historical information of an uncertain event is available. The problem is crisped using an uncertain chance-constrained programming approach and its non-linear objective function is linearized by a variable changing approach. An illus...

متن کامل

Uncertainty in linear fractional transportation problem

In this paper, we study the linear fractional transportation problem with uncertain arameters. After recalling some definitions, concepts and theorems in uncertainty theory we present three approaches for solving this problem. First we consider the expected value of the objective function together with the expectation of satisfying constraints. Optimizing the expected value of the objective fun...

متن کامل

Close interval approximation of piecewise quadratic fuzzy numbers for fuzzy fractional program

  The fuzzy approach has undergone a profound structural transformation in the past few decades. Numerous studies have been undertaken to explain fuzzy approach for linear and nonlinear programs. While, the findings in earlier studies have been conflicting, recent studies of competitive situations indicate that fractional programming problem has a positive impact on comparative scenario. We pro...

متن کامل

Modified FGP approach and MATLAB program for solving multi-level linear fractional programming problems

In this paper, we present modified fuzzy goal programming (FGP) approach and generalized MATLAB program for solving multi-level linear fractional programming problems (ML-LFPPs) based on with some major modifications in earlier FGP algorithms. In proposed modified FGP approach, solution preferences by the decision makers at each level are not considered and fuzzy goal for the decision vectors i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 205  شماره 

صفحات  -

تاریخ انتشار 2010